发布时间:2024-09-03 23:26:37

DenseNet # 卷积神经网络 # 深度学习 # PyTorch # 图像分类 # 密集连接 # 特征重用 # 梯度消失 # BatchNormalization # 卷积层 # 残差网络 # 计算机视觉 # 模型实现 # 网络架构 # 特征提取 CODE标签:DenseNet密集连接卷积网络的实现 107 等级:初级 类型:神经网络模型 作者:集智官方
本内容由, 集智数据集收集发布,仅供参考学习,不代表集智官方赞同其观点或证实其内容的真实性,请勿用于商业用途。
    DenseNet(密集连接卷积网络)是一种卷积神经网络架构,由GaoHuang、ZhuangLiu、KilianQ.Weinberger和LaurensvanderMaaten在2016年提出。DenseNet的核心思想是在网络层之间建立直接连接,这样每一层都可以访问所有先前层的特征映射。这种密集连接有助于改善梯度流、增强特征传递,并且可以有效地利用特征。

    下面是一个使用PyTorch实现的简化版DenseNet的示例代码。我们将以DenseNet-121为例,这是一种较浅的DenseNet变体,通常用于图像分类任务。

       首先,我们需要定义一个基本的密集连接块(dense block)和过渡层(transition layer),然后构建整个 DenseNet-121 模型。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 定义基本的密集连接块
class DenseLayer(nn.Module):
    def __init__(self, num_input_features, growth_rate=32, bn_size=4):
        super(DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
                                           growth_rate, kernel_size=1, stride=1,
                                           bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1,
                                           bias=False)),
        
    def forward(self, x):
        new_features = self.conv2(self.relu2(self.norm2(self.relu1(self.norm1(x)))))
        return torch.cat([x, new_features], 1)

# 定义密集块
class DenseBlock(nn.Module):
    def __init__(self, num_layers, num_input_features, bn_size=4, growth_rate=32):
        super(DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(num_input_features + i * growth_rate, growth_rate=32, bn_size=4)
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.named_children():
            new_features = layer(torch.cat(features, 1))
            features.append(new_features)
        return torch.cat(features, 1)

# 定义过渡层
class Transition(nn.Module):
    def __init__(self, num_input_features, num_output_features):
        super(Transition, self).__init__()
        self.norm = nn.BatchNorm2d(num_input_features)
        self.relu = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(num_input_features, num_output_features,
                              kernel_size=1, stride=1, bias=False)
        self.pool = nn.AvgPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.conv(self.relu(self.norm(x)))
        out = self.pool(out)
        return out

# 定义 DenseNet-121 模型
class DenseNet121(nn.Module):
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
                 num_init_features=64, num_classes=1000):
        super(DenseNet121, self).__init__()
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
                                padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features,
                               bn_size=4, growth_rate=growth_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = Transition(num_input_features=num_features,
                                   num_output_features=num_features // 2)
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = num_features // 2

        self.features.add_module('norm5', nn.BatchNorm2d(num_features))

        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
        out = self.classifier(out)
        return out

# 初始化模型
model = DenseNet121()

# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

# 加载数据集
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'path_to_imagenet_dataset'
image_datasets = {x: datasets.ImageFolder(root=data_dir + x, transform=data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=100,
                             shuffle=True, num_workers=4)
               for x in ['train', 'val']}

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # 设置模型为训练模式
        else:
            model.eval()   # 设置模型为评估模式

        running_loss = 0.0
        running_corrects = 0

        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            optimizer.zero_grad()

            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / len(image_datasets[phase])
        epoch_acc = running_corrects.double() / len(image_datasets[phase])

        print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

print('Finished Training')

       在这段代码中,我们定义了基本的密集连接块 DenseLayer,密集块 DenseBlock 和过渡层 Transition。基于这些组件,我们构建了整个 DenseNet-121 模型,并设置了一个简单的训练循环来训练模型。

       请注意,为了使这段代码能够运行,你需要替换 'path_to_imagenet_dataset' 为你的 ImageNet 数据集的实际路径。此外,根据你的硬件条件,你可能需要调整批量大小 (batch_size) 和其他超参数以适应你的计算资源。如果要使用其他变体(如 DenseNet-169、DenseNet-201 等),则需要修改 DenseNet121 类中的 block_config 参数和其他相关配置。



DenseNet密集连接卷积网络的实现 - 集智数据集


| 友情链接: | 网站地图 | 更新日志 |


Copyright ©2024 集智软件工作室. 本站数据文章仅供研究、学习用途,禁止商用,使用时请注明数据集作者出处;本站数据均来自于互联网,如有侵权请联系本站删除。