发布时间:2024-09-03 23:26:37
本内容由, 集智数据集收集发布,仅供参考学习,不代表集智官方赞同其观点或证实其内容的真实性,请勿用于商业用途。
DenseNet(密集连接卷积网络)是一种卷积神经网络架构,由GaoHuang、ZhuangLiu、KilianQ.Weinberger和LaurensvanderMaaten在2016年提出。DenseNet的核心思想是在网络层之间建立直接连接,这样每一层都可以访问所有先前层的特征映射。这种密集连接有助于改善梯度流、增强特征传递,并且可以有效地利用特征。 下面是一个使用PyTorch实现的简化版DenseNet的示例代码。我们将以DenseNet-121为例,这是一种较浅的DenseNet变体,通常用于图像分类任务。
首先,我们需要定义一个基本的密集连接块(dense block)和过渡层(transition layer),然后构建整个 DenseNet-121 模型。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 定义基本的密集连接块
class DenseLayer(nn.Module):
def __init__(self, num_input_features, growth_rate=32, bn_size=4):
super(DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1,
bias=False)),
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1,
bias=False)),
def forward(self, x):
new_features = self.conv2(self.relu2(self.norm2(self.relu1(self.norm1(x)))))
return torch.cat([x, new_features], 1)
# 定义密集块
class DenseBlock(nn.Module):
def __init__(self, num_layers, num_input_features, bn_size=4, growth_rate=32):
super(DenseBlock, self).__init__()
for i in range(num_layers):
layer = DenseLayer(num_input_features + i * growth_rate, growth_rate=32, bn_size=4)
self.add_module('denselayer%d' % (i + 1), layer)
def forward(self, init_features):
features = [init_features]
for name, layer in self.named_children():
new_features = layer(torch.cat(features, 1))
features.append(new_features)
return torch.cat(features, 1)
# 定义过渡层
class Transition(nn.Module):
def __init__(self, num_input_features, num_output_features):
super(Transition, self).__init__()
self.norm = nn.BatchNorm2d(num_input_features)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
out = self.conv(self.relu(self.norm(x)))
out = self.pool(out)
return out
# 定义 DenseNet-121 模型
class DenseNet121(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, num_classes=1000):
super(DenseNet121, self).__init__()
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
]))
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=4, growth_rate=growth_rate)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = Transition(num_input_features=num_features,
num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = self.classifier(out)
return out
# 初始化模型
model = DenseNet121()
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 加载数据集
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'path_to_imagenet_dataset'
image_datasets = {x: datasets.ImageFolder(root=data_dir + x, transform=data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=100,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train() # 设置模型为训练模式
else:
model.eval() # 设置模型为评估模式
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.double() / len(image_datasets[phase])
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
print('Finished Training')
在这段代码中,我们定义了基本的密集连接块 DenseLayer
,密集块 DenseBlock
和过渡层 Transition
。基于这些组件,我们构建了整个 DenseNet-121 模型,并设置了一个简单的训练循环来训练模型。
请注意,为了使这段代码能够运行,你需要替换 'path_to_imagenet_dataset'
为你的 ImageNet 数据集的实际路径。此外,根据你的硬件条件,你可能需要调整批量大小 (batch_size
) 和其他超参数以适应你的计算资源。如果要使用其他变体(如 DenseNet-169、DenseNet-201 等),则需要修改 DenseNet121
类中的 block_config
参数和其他相关配置。
本站将定期更新分享一些python机器学习的精选代码